Initial geometry fluctuations and Triangular flow

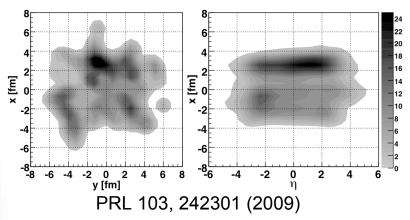
Glasma Workshop

May 11, 2010

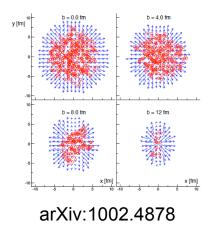
BA, G.Roland, arXiv:1003.0194 (PRC in press)

Two points

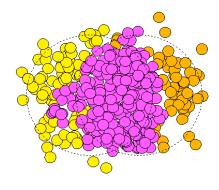
- Initial geometry fluctuations can explain the ridge and broad away side.
 - J. Takahashi et al.



P. Sorensen



Glauber MC



arXiv:0805.4411

Flow is the right language for these structures:

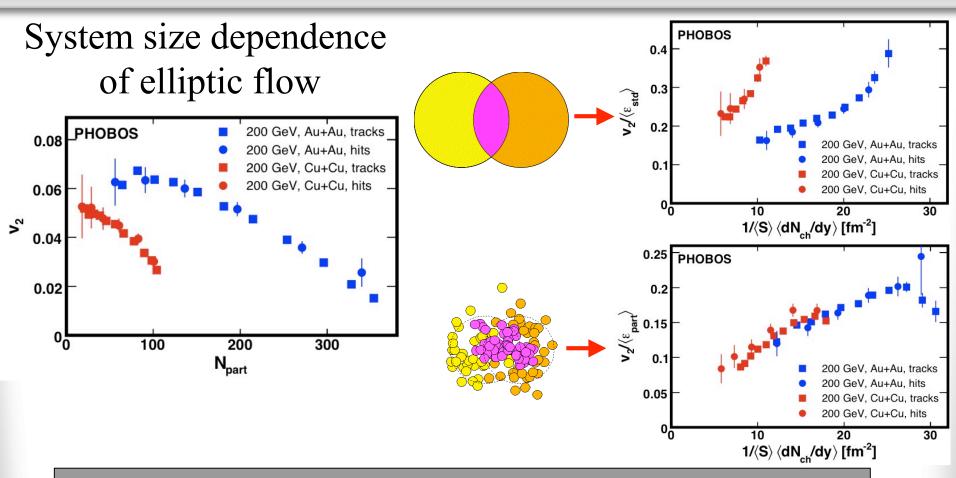
$$\varepsilon \Rightarrow v_2$$

 $\varepsilon \Rightarrow v_2$ Elliptic flow

$$\varepsilon_3 \Rightarrow v_3$$

 $\epsilon_3 \Rightarrow v_3$ Triangular flow

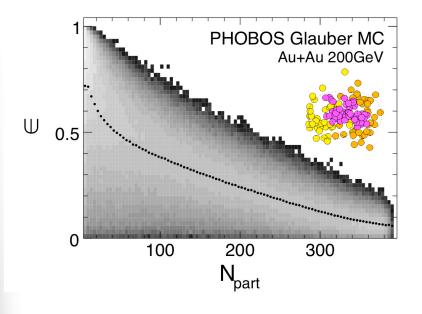
Initial Geometry Fluctuations I



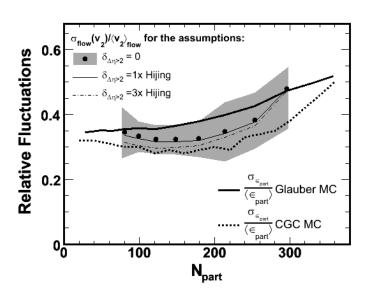
Participant eccentricity reconciles elliptic flow for Cu+Cu and Au+Au collisions.

Initial Geometry Fluctuations II

Eccentricity fluctuations



Elliptic flow fluctuations



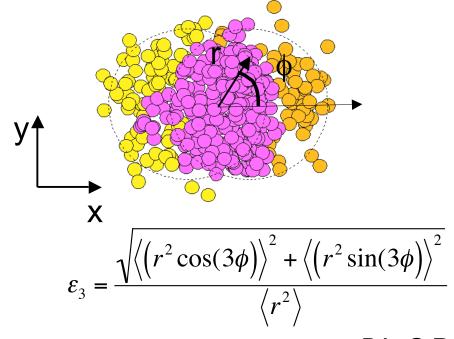
Observed elliptic flow fluctuations confirm large fluctuations in the initial collision geometry.

Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.

$$\varepsilon = \frac{\sqrt{\left(\sigma_y^2 - \sigma_x^2\right)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}$$

$$\varepsilon = \frac{\sqrt{\left\langle \left(r^2 \cos(2\phi)\right\rangle^2 + \left\langle \left(r^2 \sin(2\phi)\right\rangle^2}\right\rangle}}{\left\langle r^2\right\rangle}$$

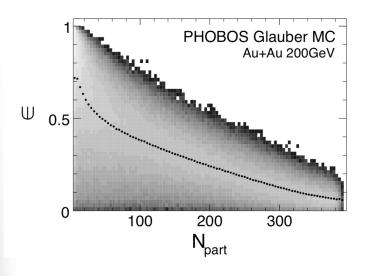


BA, G.Roland, arXiv:1003.0194 (PRC in press)

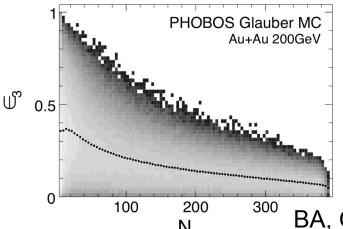
Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.

$$\varepsilon = \frac{\sqrt{\left\langle \left(r^2 \cos(2\phi)\right\rangle^2 + \left\langle \left(r^2 \sin(2\phi)\right\rangle^2\right\rangle}}{\left\langle r^2 \right\rangle}$$



$$\varepsilon_{3} = \frac{\sqrt{\left\langle \left(r^{2}\cos(3\phi)\right\rangle^{2} + \left\langle \left(r^{2}\sin(3\phi)\right\rangle^{2}\right)}}{\left\langle r^{2}\right\rangle}$$

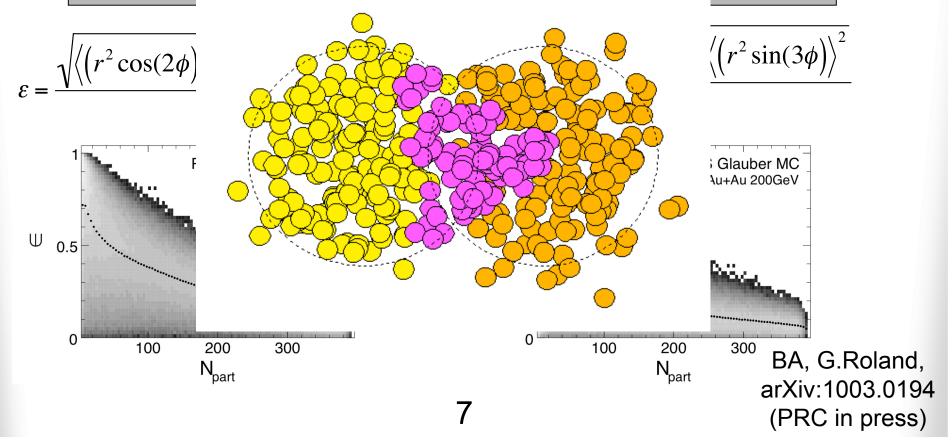


BA, G.Roland, arXiv:1003.0194 (PRC in press)

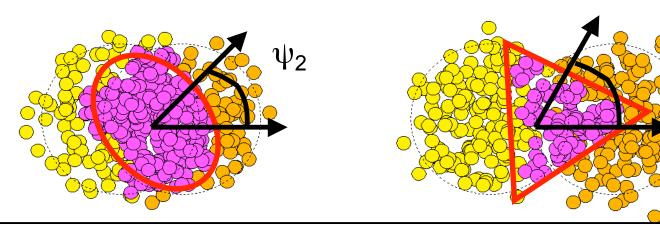
6

Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.



Triangular flow



$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_n)) \right) \qquad v_2 = \left\langle \cos(2(\phi - \psi_n)) \right\rangle$$

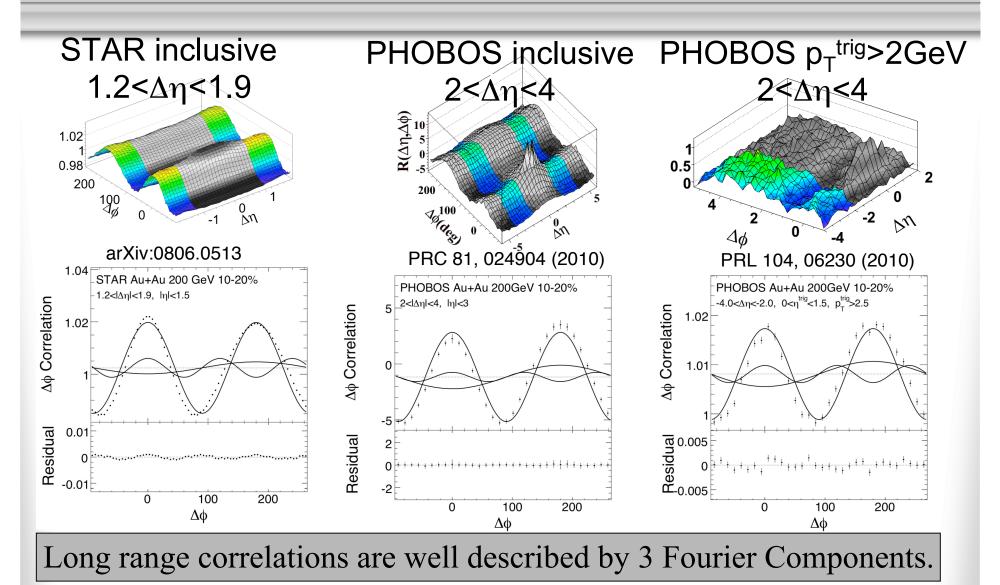
$$v_3 = 0$$

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_n)) \right) \qquad v_2 = \left\langle \cos(2(\phi - \psi_2)) \right\rangle$$

$$v_3 = \left\langle \cos(3(\phi - \psi_3)) \right\rangle$$

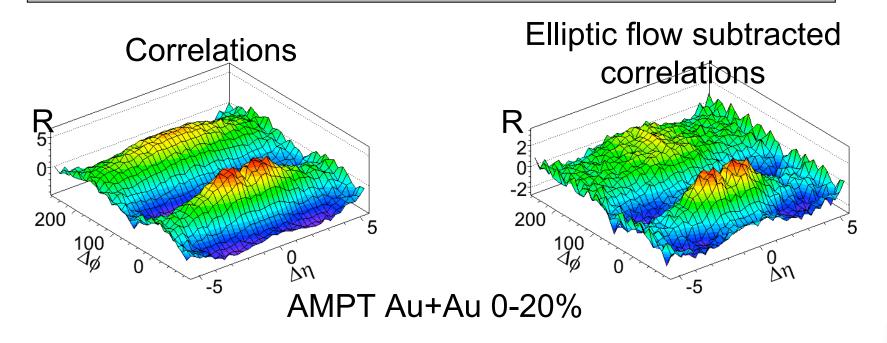
BA, G.Roland, arXiv:1003.0194 (PRC in press)

Correlations at large Δη



AMPT Model

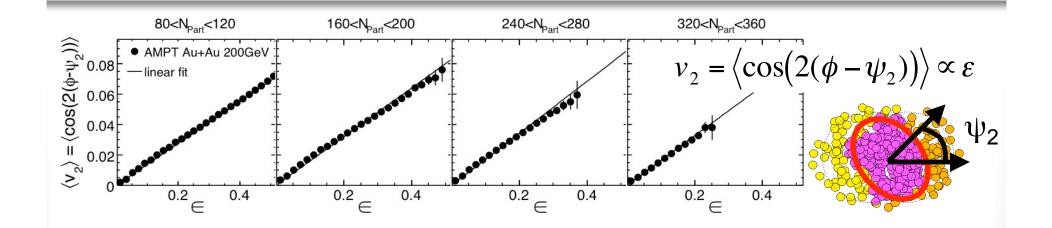
AMPT model: Glauber initial conditions, collective flow



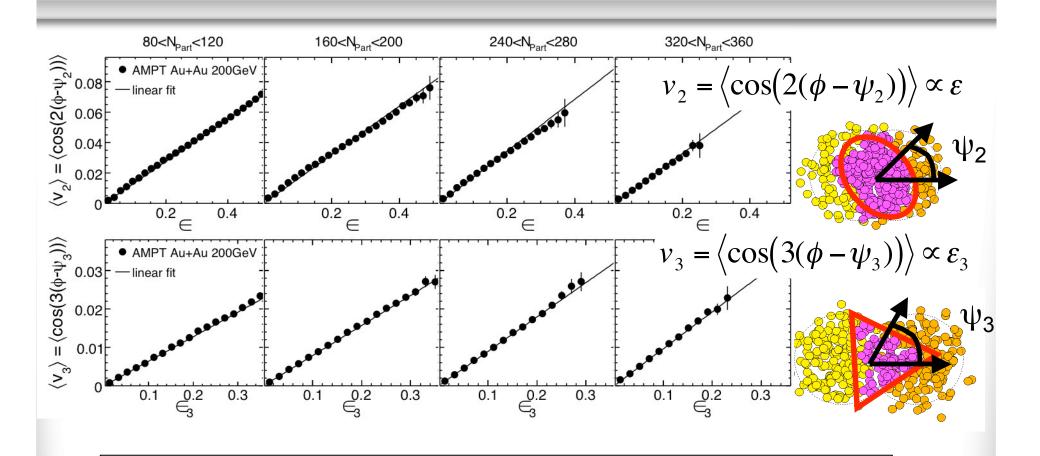
AMPT model also produces similar correlation structures that extend out to long range in $\Delta\eta$.

Lin et. al. PRC72, 064901 (2005) Ma et. Al. PLB641 362 (2006)

Elliptic flow in AMPT



Triangular flow in AMPT



Triangularity leads to triangular flow in AMPT.

BA, G.Roland, arXiv:1003.0194 (PRC in press)

Flow and correlations in AMPT

$$\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi} = \frac{N}{2\pi} \left(1 + \sum_{n\Delta} 2V_{n\Delta} \cos(n\Delta\phi)\right) \qquad V_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} v_{n}(\eta) \times v_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$V_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} v_{n}(\eta) \times v_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$V_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} v_{n}(\eta) \times v_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$V_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} v_{n}(\eta) \times v_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$V_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} v_{n}(\eta) \times v_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$V_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} v_{n}(\eta) \times v_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$V_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} v_{n}(\eta) \times v_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$\mathbf{V}_{3\Delta} = \left\langle \cos(3(\phi_1 - \phi_2)) \right\rangle$$

$$\mathbf{V}_{3\Delta}^{\text{flow}} = \left\langle \cos(3(\phi_1 - \psi_3)) \right\rangle \left\langle \cos(3(\phi_2 - \psi_3)) \right\rangle$$

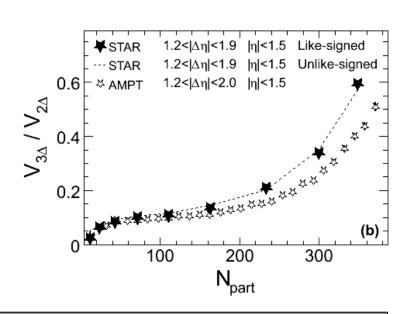
BA, G.Roland, arXiv:1003.0194 (PRC in press)

Triangular flow in data

PHOBOS

PHOBOS $-4 < \Delta \eta < -2$ $0 < \eta^{trig} < 1.5$ $p_{trig}^{trig} > 2.5$ 0.6 AMPT $-4 < \Delta \eta < -2$ $0 < \eta^{trig} < 1.5$ $p_{trig}^{trig} > 2.5$ 0.6 PHOBOS $2 < |\Delta \eta| < 4$ $|\eta| < 3$ 0.4 AMPT $2 < |\Delta \eta| < 4$ $|\eta| < 3$ 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.8 0.9

STAR



The ratio of triangular flow to elliptic flow qualitatively agree between data and AMPT.

STAR arXiv:0806.0513

PHOBOS PRC 81, 024904 (2010)

PHOBOS PRL 104, 06230 (2010)

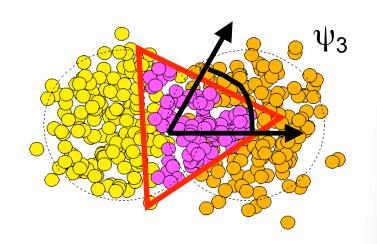
14

BA, G.Roland, arXiv:1003.0194 (PRC in press)

Summary

- Fluctuations in MC Glauber leads to finite "participant triangularity."
- In AMPT model, large triangular flow signal observed correlated with initial triangularity:

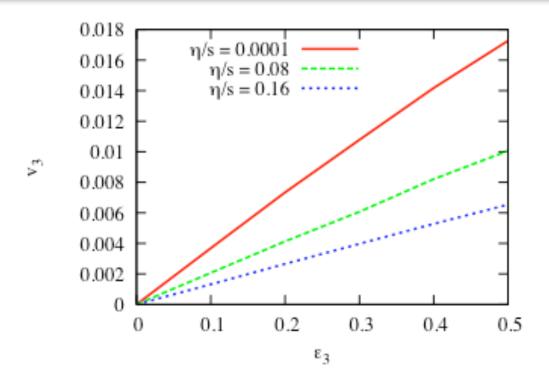
$$v_3 = \langle \cos(3(\phi - \psi_3)) \rangle \propto \varepsilon_3$$



- Ridge and broad away side in AMPT have dominant contribution from triangular flow.
- Fourier decomposition of long range azimuthal correlations in AMPT and data show qualitative agreement as a function of centrality and momentum.

BA, G.Roland, arXiv:1003.0194 (PRC in press)

Future

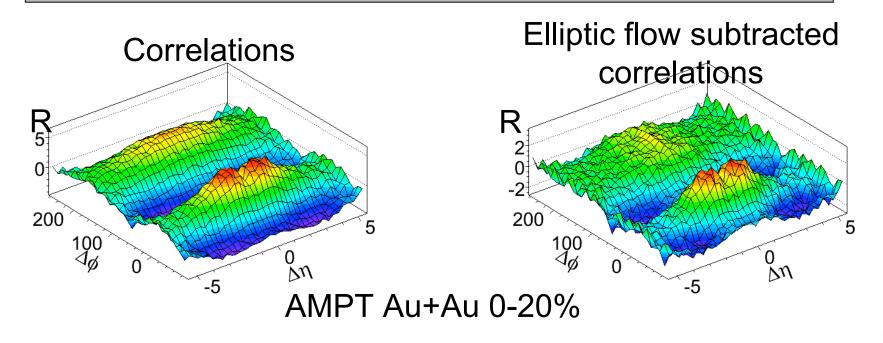


Triangular flow is a new handle on the initial geometry and the hydrodynamic expansion of the medium.

Backups

AMPT Model

AMPT model: Glauber initial conditions, collective flow

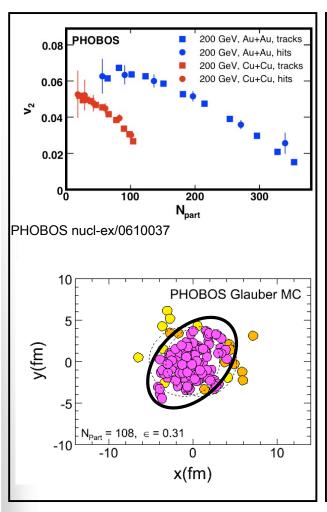


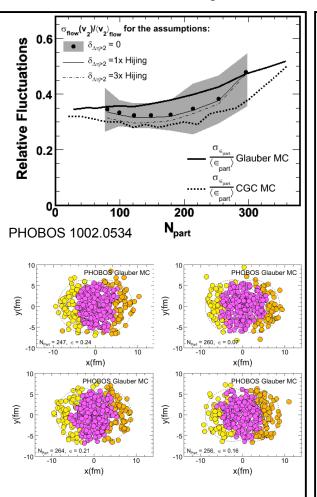
AMPT model also produces similar correlation structures that extend out to long range in $\Delta\eta$.

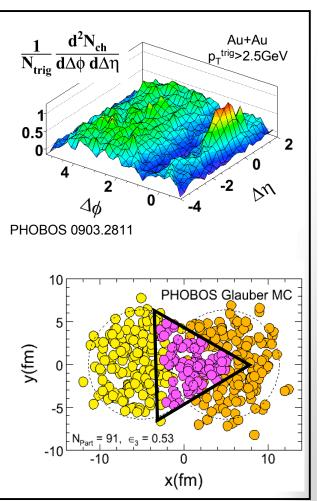
Lin et. al. nucl-th/0411110

Initial geometry fluctuations

A consistent picture

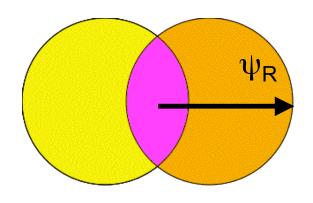






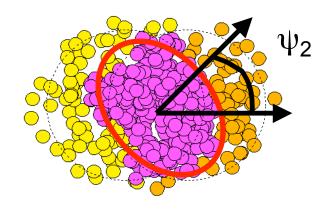
19

Two different pictures



$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_R)) \right)$$

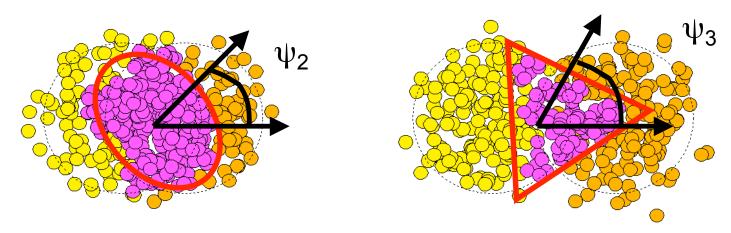
$$v_2 = \langle \cos(2(\phi - \psi_R)) \rangle$$



$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_n)) \right)$$

$$v_2 = \langle \cos(2(\phi - \psi_2)) \rangle$$

Triangular flow



$$\psi_2 = \frac{\operatorname{atan2}(\langle r^2 \sin(2\phi_{\text{part}}) \rangle, \langle r^2 \cos(2\phi_{\text{part}}) \rangle) + \pi}{2}$$

$$\psi_3 = \frac{\operatorname{atan2}(\langle r^2 \sin(3\phi_{\text{part}})\rangle, \langle r^2 \cos(3\phi_{\text{part}})\rangle) + \pi}{3}$$

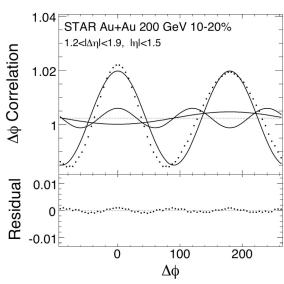
1003.0194

Phases

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \psi_n)) \right)$$

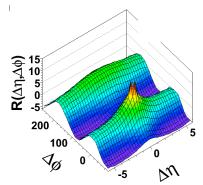
$$= \frac{N}{2\pi} \left(1 + \dots + 2v_2 \cos(2(\phi - \psi_2)) + 2v_3 \cos(3(\phi - \psi_3)) + \dots \right)$$

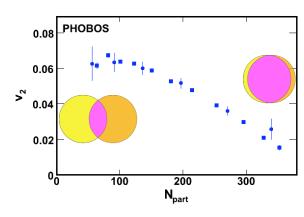
$$\frac{\mathrm{d}N^{\text{pairs}}}{\mathrm{d}\Delta\phi} = \frac{N^{\text{pairs}}}{2\pi} \left(1 + \dots + 2v_{2}^{2} \cos(2\Delta\phi) + 2v_{3}^{2} \cos(3\Delta\phi) + \dots\right)$$

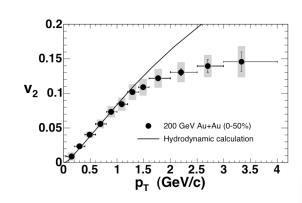


Second Fourier coefficient

- Why do we believe it is collective flow?
 - Large!
 - Present at large $\Delta \eta$: early times
 - Connection to initial geometry
 - i.e. centrality dependence
 - p_T dependence
 - Also $v_2\{4\}$, v_2 fluctuations and $v_2^2(\eta_1,\eta_2)$







Third Fourier coefficient

- Why should we believe it is collective flow?
 - Large!
 - Present at large $\Delta \eta$: early times
 - Connection to initial geometry
 - i.e. centrality dependence
 - p_T dependence
 - Also three particle correlations

